题目列表(包括答案和解析)
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
已知函数其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵,
,
∴原不等式等价于:,
即, 亦即
分离参数的思想求解参数的范围
解:(Ⅰ)当时,
,
.
当在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴时,
,
.
(Ⅱ)∵,
,
∴原不等式等价于:,
即, 亦即
.
∴对于任意的,原不等式恒成立,等价于
对
恒成立,
∵对于任意的时,
(当且仅当
时取等号).
∴只需,即
,解之得
或
.
因此,的取值范围是
设f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一问中,
即变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;
第二问中因为,所以
,则
,又
,
,从而
进而得到结论。
(Ⅰ) 解:
即。…………………………………3分
变换的步骤是:
①把函数的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;…………………………………3分
(Ⅱ) 解:因为,所以
,则
,又
,
,从而
……2分
(1)当时,
;…………2分
(2)当时;
已知,(其中
)
⑴求及
;
⑵试比较与
的大小,并说明理由.
【解析】第一问中取,则
;
…………1分
对等式两边求导,得
取,则
得到结论
第二问中,要比较与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当时,
;
当时,
;
猜想:当时,
运用数学归纳法证明即可。
解:⑴取,则
;
…………1分
对等式两边求导,得,
取,则
。 …………4分
⑵要比较与
的大小,即比较:
与
的大小,
当时,
;
当时,
;
当时,
;
…………6分
猜想:当时,
,下面用数学归纳法证明:
由上述过程可知,时结论成立,
假设当时结论成立,即
,
当时,
而
∴
即时结论也成立,
∴当时,
成立。
…………11分
综上得,当时,
;
当时,
;
当时,
x2 | 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com