题目列表(包括答案和解析)
已知三次函数f(x)=x(x-a)(x-b) 0<a<b
(1)当f(x)取得极值时x=s和x=t(s<t),求证:o<s<a<t<b;
(2)求f(x)的单调区间.
设函数.
(Ⅰ) 当时,求
的单调区间;
(Ⅱ) 若在
上的最大值为
,求
的值.
【解析】第一问中利用函数的定义域为(0,2),
.
当a=1时,所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),
.
(1)当时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
已知函数,
.
(Ⅰ)若函数和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,,当x>2时,
,
要使在(a,a+1)上递增,必须
如使在(a,a+1)上递增,必须
,即
由上得出,当时
,
在
上均为增函数
(Ⅱ)中方程有唯一解
有唯一解
设 (x>0)
随x变化如下表
x |
|
|
|
|
- |
|
+ |
|
|
极小值 |
|
由于在上,
只有一个极小值,
的最小值为-24-16ln2,
当m=-24-16ln2时,方程有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,,当x>2时,
,
要使在(a,a+1)上递增,必须
如使在(a,a+1)上递增,必须
,即
由上得出,当时
,
在
上均为增函数 ……………6分
(Ⅱ)方程有唯一解
有唯一解
设 (x>0)
随x变化如下表
x |
|
|
|
|
- |
|
+ |
|
|
极小值 |
|
由于在上,
只有一个极小值,
的最小值为-24-16ln2,
当m=-24-16ln2时,方程有唯一解
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com