题目列表(包括答案和解析)
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.
第二问中。由于即为即.
当时, , , , 所以当时,得,由正弦定理得,联立方程组,解得,得到。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分
又因为△ABC的面积等于,所以,得,………1分
联立方程,解方程组得. ……………2分
(Ⅱ)由题意得,
即. …………2分
当时, , , , ……1分
所以 ………………1分
当时,得,由正弦定理得,联立方程组
,解得,; 所以
等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______
【解析】显然公比,设首项为,则由,得,即,即,即,所以,解得.
10-x |
10+x |
10-x |
10+x |
k |
x+a |
x+b |
x+c |
1 |
3 |
1 |
2 |
kx |
ax+1 |
bx+1 |
cx+1 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com