5.请举例说明建筑物中的几何图形. 查看更多

 

题目列表(包括答案和解析)

阅读下面的短文,并解答下列问题.

相似形开阔了人类的视野

  数学知识最初都产生于实践的需要,古人在测量土地面积和建筑物的高度时,就用到了相似形的知识.比如,几何学之父,古希腊人欧几里得曾经这样间接地测量金字塔的高度:他等到自己在阳光下的身影长与他的身高正好相等的时刻,测量了金字塔的塔影的长度.“这个,各位先生!”他宣布,“恰恰就是大金字塔的高度.”

  如图(1),设A为塔高,B为身高,由B∥A,当身影长与身高相等时,P=B,所以AP,即塔高等于塔影的长度.

  光学望远镜、照相机的成像原理都用到相似形的知识,以简单的针孔成像为例,在方盒一侧壁开有极细的针孔,蜡烛发出的光线穿过针孔在方盒另一侧壁上形成一个倒立的像.蜡烛距方盒越远,所成像越小,像长和蜡烛长之间的比可以表示为.如图(2)

  人眼观察远处的物体显得较小,其中的道理类似于以上针孔成像原理,只是人的眼球相当于照相机的光学镜头,成像原理稍复杂.

  无数事实说明,相似形的知识使人类大大拓宽了视野,扩展了人类观察和认识事物的能力.

请你再举例说明相似形在实际生活、科学领域等方面的应用.

查看答案和解析>>


同步练习册答案