题目列表(包括答案和解析)
已知命题及其证明:
(1)当时,左边=1,右边=所以等式成立;
(2)假设时等式成立,即成立,
则当时,,所以时等式也成立。
由(1)(2)知,对任意的正整数n等式都成立。
经判断以上评述
A.命题、推理都正确 B命题不正确、推理正确
C.命题正确、推理不正确 D命题、推理都不正确
试判断下面的证明过程是否正确:
用数学归纳法证明:
证明:(1)当时,左边=1,右边=1
∴当时命题成立.
(2)假设当时命题成立,即
则当时,需证
由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为
∴式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.
试判断下面的证明过程是否正确:
用数学归纳法证明:
证明:(1)当时,左边=1,右边=1
∴当时命题成立.
(2)假设当时命题成立,即
则当时,需证
由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为
∴式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com