22.本小题主要考查函数的单调性.极值.导数.不等式等基本知识.考查运用导数研究函数性质的方法.考查分类讨论.化归以及数形结合等数学思想方法.考查分析问题.解决问题的能力.满分14分. 解:(Ⅰ)由得.所以. 由得.故的单调递增区间是. 由得.故的单调递减区间是. (Ⅱ)由可知是偶函数. 于是对任意成立等价于对任意成立. 由得. ①当时.. 此时在上单调递增. 故.符合题意. ②当时.. 当变化时的变化情况如下表: 单调递减 极小值 单调递增 由此可得.在上.. 依题意..又. 综合①.②得.实数的取值范围是. (Ⅲ). . . 由此得. 故. 数学科学段测试 查看更多

 

题目列表(包括答案和解析)

已知函数的定义域为,对任意都有

数列满足N.证明函数是奇函数;求数列的通项公式;令N, 证明:当时,.

(本小题主要考查函数、数列、不等式等知识,  考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)

查看答案和解析>>

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.2003年起计划10年内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起计划10内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起的第x年(2003年为第一年)该村人均产值为y万元.

(1)    写出yx之间的函数关系式;

(2)    为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人?

本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.

查看答案和解析>>

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.2003年起计划10年内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起计划10内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起的第x年(2003年为第一年)该村人均产值为y万元.

(1)    写出yx之间的函数关系式;

(2)    为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人?

本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>


同步练习册答案