题目列表(包括答案和解析)
(本题满分15分)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.
(I)求椭圆的方程;
(II)设点在抛物线:上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.
(本题满分15分)已知过点(,0)()的动直线交抛物线于、两点,点与点关于轴对称.(I)当时,求证:;
(II)对于给定的正数,是否存在直线:,使得被以为直径的圆所截得的弦长为定值?如果存在,求出的方程;如果不存在,试说明理由.
(本题满分15分)如图,分别过椭圆E:左右焦点、的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.已知当l1与x轴重合时,,.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
(本小题满分15分)
已知定点A、B间的距离为2,以B为圆心作半径为2的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C.
(1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线;
(2)试判断l与曲线C的位置关系,并加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com