题目列表(包括答案和解析)
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分)
已知函数。
(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3,若点 (n∈N*)在函数y=f′(x)的图象上,求证:点(n, Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值。
(本小题满分12分)
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
(本小题满分12分)
已知数列{an}的各项均为正数,Sn为其前n项和;且Sn =" 2" an -2(n∈N*);
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且bn= (n∈N*);
求证:对于任意的正整数n,总有Tn <2;
(3)在正数数列{cn}中,设 (cn) n+1 = an+1(n∈N*);求数列{cn}中的最大项。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com