由 知E是MD的中点. 查看更多

 

题目列表(包括答案和解析)

(2012•大丰市一模)已知:如图,M是线段BC的中点,BC=4,分别以MB、MC为边在线段BC的同侧作等边△BAM、等边△MCD,连接AD.
(1)求证:四边形ABCD是等腰梯形;
(2)将△MDC绕点M逆时针方向旋转α(60°<α<120°),得到△MD′C′,MD′交AB于点E,MC′交AD于点F,连接EF.
①求证:EF∥D′C′;
②△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1,F2分别是椭圆E:的左、右焦点,A,B分别是椭圆E的左、右顶点,且
(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M 为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1,F2分别是椭圆E:的左、右焦点,A,B分别是椭圆E的左、右顶点,且
(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M 为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1,F2分别是椭圆E:的左、右焦点,A,B分别是椭圆E的左、右顶点,且
(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M 为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1,F2分别是椭圆E:的左、右焦点,A,B分别是椭圆E的左、右顶点,且
(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M 为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案