我们定义一种新运算: △(a.b)=◇(a.b)=试求◇[△]的 值. 查看更多

 

题目列表(包括答案和解析)

阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形是否存在奇异三角形呢?
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”这句话是对还是错?

(2)在Rt△ABC中,两边长分别是a=5
2
、c=10,这个三角形是否是奇异三角形?请说明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求(b+c):a的值.

查看答案和解析>>

(2011•桃江县模拟)阅读材料:我们知道,有两条边相等的三角形叫做等腰三角形;类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)如图(1),O是等边△ABC的内心,连接BO、CO并延长分别交AB、AC于点E、D,连接DE,求证:四边形BCDE是等对边四边形;
(2)如图(2),在不等边△ABC中,点D、E分别是边AB、AC上的点,DE≠BC,且满足∠EBC=∠DCB=25°,若四边形BCED是等对边四边形,求∠A的度数.(提示:作BF⊥CD交CD的延长线于F,CG⊥BE于G)

查看答案和解析>>

阅读材料:我们知道,有两条边相等的三角形叫做等腰三角形;类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)如图(1),O是等边△ABC的内心,连接BO、CO并延长分别交AB、AC于点E、D,连接DE,求证:四边形BCDE是等对边四边形;
(2)如图(2),在不等边△ABC中,点D、E分别是边AB、AC上的点,DE≠BC,且满足∠EBC=∠DCB=25°,若四边形BCED是等对边四边形,求∠A的度数.(提示:作BF⊥CD交CD的延长线于F,CG⊥BE于G)

查看答案和解析>>

阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形是否存在奇异三角形呢?
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”这句话是对还是错?______
(2)在Rt△ABC中,两边长分别是a=5数学公式、c=10,这个三角形是否是奇异三角形?请说明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求(b+c):a的值.

查看答案和解析>>

阅读材料:我们知道,有两条边相等的三角形叫做等腰三角形;类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)如图(1),O是等边△ABC的内心,连接BO、CO并延长分别交AB、AC于点E、D,连接DE,求证:四边形BCDE是等对边四边形;
(2)如图(2),在不等边△ABC中,点D、E分别是边AB、AC上的点,DE≠BC,且满足∠EBC=∠DCB=25°,若四边形BCED是等对边四边形,求∠A的度数.(提示:作BF⊥CD交CD的延长线于F,CG⊥BE于G)

查看答案和解析>>


同步练习册答案