观察下列等式.找规律.回答问题: 1×3=; 3×5=; 5×7=;-- (1)请你按照以上规律写出第4个式子, (2)请你按照以上规律写出第n个式子 查看更多

 

题目列表(包括答案和解析)

(10分)观察下列等式:
; ②;③;……
回答下列问题:
【小题1】(1)利用你观察到的规律,化简:
【小题2】(2)计算:

查看答案和解析>>

(10分)观察下列等式:
; ②;③;……
回答下列问题:
【小题1】(1)利用你观察到的规律,化简:
【小题2】(2)计算:

查看答案和解析>>

附加题:
(1)已知|a-2|+|b+6|=0,则a+b=
-4
-4

(2)观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将以上三个等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

①猜想并写出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

②直接写出结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

(3)在数轴上有两点,它们到原点的距离分别是2和3,问这两点之间的距离是多少?
(4)求|
1
2
-1|+|
1
3
-
1
2
|+…+|
1
99
-
1
98
|+|
1
100
-
1
99
|的值.
(5)如图所示,数轴上有四点A,B,C,D分别表示有理数a,b,c,d,用“<”把表示a,b,c,d,|a|,|b|,-|c|,-|d|的数连接起来.

查看答案和解析>>

(每小题4分共12分)探索与思考
(1)观察下列式子:
2
1
×2=
2
1
+2,
3
2
×3=
3
2
+3,
4
3
×4=
4
3
+4,
5
4
×5=
5
4
+5,…
根据这些等式的特点,你能用式子表示它的一般规律吗能,请写出.
(2)观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102

想一想:等式左边各项幂的底数与右边幂的底数有什么关系答:
试一试:13+23+33+43+…+203=
 

猜一猜:可引出什么规律:(可用带字母的等式表示,也可用文字叙述).

查看答案和解析>>

17、观察下列等式,解答下列问题
等式(1):32+42=52
等式(2):102+112+122=132+142
等式(3):212+222+232+242=252+262+272

等式(n)
(1)由上述等式可知,每个等式中紧靠等于号左边的数分别是42、122、242…,这些数存在规律(4×1)2,[4×(1+2)]2,[4×(1+2+3)]2…请你根据这个规律直接写出等式(4);
(2)若紧靠等于号左边的数是2202,那么该等式是多少个连续正整数平方和组成的?

查看答案和解析>>


同步练习册答案