题目列表(包括答案和解析)
如图,已知⊙中,直径
垂直于弦
,垂足为
,
是
延长线上一点,
切⊙
于点
,连接
交
于点
,证明:
【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙
的切线,∴
为弦切角
连接 ∴
…注意到
是直径且垂直弦
,所以
且
…利用
,可以证明。
解:∵为⊙
的切线,∴
为弦切角
连接 ∴
……………………4分
又∵ 是直径且垂直弦
∴
且
……………………8分
∴ ∴
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
【解析】第一问中利用圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
第二问中,由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为
是定点,所以点
在定直线
第三问中,设直线,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去). …………………(2分)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com