已知=2.求:(I)的值, (II)的值. 查看更多

 

题目列表(包括答案和解析)

已知动点P(x,y)与两定点m(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(I) 求动点P的轨迹C的方程;
(II) 试根据λ的取值情况讨论轨迹C的形状:
(III) 当λ=-2时,过定点F(0,1)的直线l与轨迹C交于A、b两点,求△OAB的面积的最大值.

查看答案和解析>>

已知椭圆C的焦点是F1( 0, -
3
)
F2(0, 
3
)
,点P在椭圆上且满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:2x+y+2=0与椭圆C的交点为A,B.
(i)求使△PAB的面积为
1
2
的点P的个数;
(ii)设M为椭圆上任一点,O为坐标原点,
OM
OA
OB
(λ,μ∈R)
,求λ22的值.

查看答案和解析>>

已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+
p+2
x
-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.

查看答案和解析>>

已知点A,B分别是射线l1:y=x(x≥0),l2:y=-x(x≥0)上的动点,O为坐标原点,且△OAB的面积为定值2.
(I)求线段AB中点M的轨迹C的方程;
(II)过点N(0,2)作直线l,与曲线C交于不同的两点P,Q,与射线l1,l2分别交于点R,S,试求出直线l的斜率的取值范围,并证明:|PR|=|QS|.

查看答案和解析>>

已知实数a是常数,f(x)=x3+ax2-3x+7.
(I )当x∈[2,+∞)时,f(x)的图象的切线的斜率不小于0,求a的取值范围;
(II)如果当x=3时,f(x)取得极值,当.x∈[1,4]时,证明:|f(x)|≤11.

查看答案和解析>>


同步练习册答案