题目列表(包括答案和解析)
(本小题满分12分)
设椭圆C:+=1(a>b>0)的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,AF=2FB.
(I)求椭圆C的离心率;
(II)如果|AB|=,求椭圆C的方程.
(本小题满分12分)
已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为e. 直线
l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,设=λ.
(1)证明:λ=1-e2;
(2)若,△MF1F2的周长为6,求椭圆C的方程.
(本小题满分12分)
已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1,l2是过点G(,0)且互相垂直的两条直线,l1交E于A, B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com