(一)椭圆的定义 1.第一定义:平面内与两个定点为F.F的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点.两焦点的距离叫椭圆的焦距.特别地.当常数等于时.轨迹是线段FF.当常数小于时.无轨迹. 2.第二定义:平面内到定点F的距离和到定直线l的距离之比等于常数e的点的轨迹.叫做椭圆.定点F叫椭圆的焦点.定直线l叫做椭圆的准线.e叫椭圆的离心率. 椭圆有两个焦点.两条准线.该定义中的焦点和准线具有“对应性 .即左焦点对应左准线.右焦点对应右准线. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

 

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>


同步练习册答案