二面角及二面角的平面角 (1)半平面 (2)二面角 . 二面角的平面角θ的取值范围是 (3)二面角的平面角 ①以二面角棱上任意一点为端点.分别在两个面内作垂直于棱的射线.这两条射线所组成的角叫做二面角的平面角. 如图.∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关. ②二面角的平面角具有下列性质: (i)二面角的棱垂直于它的平面角所在的平面.即AB⊥平面PCD. (ii)从二面角的平面角的一边上任意一点作另一面的垂线.垂足必在平面角的另一边上. (iii)二面角的平面角所在平面与二面角的两个面都垂直.即平面PCD⊥α. 平面PCD⊥β. 查看更多

 

题目列表(包括答案和解析)

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量和特征值λ2=2及对应的一个特征向量,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

(2013•南通二模)选修4-4:坐标系与参数方程
在平面直角坐标xOy中,已知圆C1x2+y2=4,圆C2:(x-2)2+y2=4
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1,C2的极坐标方程及这两个圆的交点的极坐标;
(2)求圆C1与C2的公共弦的参数方程.

查看答案和解析>>

A,B,C三点在半径为1的球O面上,A,B及A,C的球面距离均为
π
2
,且OA与平面ABC所成的角的正切值为
3
2
,则二面角B-OA-C的大小为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

A,B,C三点在半径为1的球O面上,A,B及A,C的球面距离均为,且OA与平面ABC所成的角的正切值为,则二面角B-OA-C的大小为( )
A.
B.
C.
D.

查看答案和解析>>


同步练习册答案