题目列表(包括答案和解析)
(本小题满分12分)
已知数列的前项和为,点在函数的图象上,数列满足。
(I)求数列的通项公式;
(II)当数列的前项和最小时,求的值;
(III)设数列的前项和为,求不等式的解集。
1 |
2 |
x0-t+1 |
2 |
x |
2 |
1 |
2 |
2x |
x+1 |
OM |
OA |
ON |
OB |
x |
x+1 |
x |
x+1 |
1 |
f(x) |
1 |
2 |
OP |
OP1 |
OP2 |
OPn |
OP |
OQ |
1 |
2 |
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
第二问,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,,有;当时,,有;当x=1时,,有
解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,,有;当时,,有;当x=1时,,有
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com