20.解:(1)因为 解得 ----1分 再分别令n=2.n=3.解得 ----3分 (2)因为 所以 两式相减得 所以 又因为.所以是首项为2.公比为2的等比数列 所以.所以 ----7分 (3)因为. 所以 所以① ② ①-②得: 所以 ----10分 若 则 即所以.解得. 所以满足不等式的最小n值6. ----12分 查看更多

 

题目列表(包括答案和解析)

(2006•宝山区二模)先看下面的例题:将5050折分成若干个连续整数之和.因为5050是偶数,所以不能分成两个连续整数之和.若分成三个连续整数之和,设为x-1,x,x+1,则3x=5050,无解.若分成四个连续整数之和,设为x-1,x,x+1,x+2,则x-1+x+x+1+x+2=5050,解得x=1262,所以,5050=1261+1262+1263+1264.按照上述思路,还有其它分法.将1815折分成若干个连续整数之和,试给出1815的至少三种折分
907+908
907+908
604+605+606
604+605+606
361+362+363+364+365
361+362+363+364+365

查看答案和解析>>

4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2

随机变量的所有等可能取值为1,2…,n,若,则(    )

A. n=3        B.n=4          C. n=5        D.不能确定

5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得

6.解析:因为只有一个零点,所以方程只有一个根,因此,所以

查看答案和解析>>

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

19C.解:由,所以,所以,因为f(x)=x,所以解得x=-1或-2或2,所以选C

调查某医院某段时间内婴儿出生时间与性别的关系,得到以下数据。

晚上

白天

合计

男婴

24

31

55

女婴

8

26

34

合计

32

57

89

试问有多大把握认为婴儿的性别与出生时间有关系?

查看答案和解析>>


同步练习册答案