22. 解:(1)设数列的公比为.由.得, 由成等差数列.得[来源:高&考%资(源#网] 即.消去.得.解得或.又因为.所以.将代入.解得. 所以 (1)由.得.当时..当时.. 所以. 当时.因为, 所以.当时.. (3) . 所以对有. 查看更多

 

题目列表(包括答案和解析)

设数列的各项均为正数.若对任意的,存在,使得成立,则称数列为“Jk型”数列.

(1)若数列是“J2型”数列,且,求

(2)若数列既是“J3型”数列,又是“J4型”数列,证明:数列是等比数列.

【解析】1)中由题意,得,…成等比数列,且公比

所以.

(2)中证明:由{}是“j4型”数列,得,…成等比数列,设公比为t. 由{}是“j3型”数列,得

,…成等比数列,设公比为

,…成等比数列,设公比为

…成等比数列,设公比为

 

查看答案和解析>>

(本题满分12分)

    为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:

 

感染

未感染

总计

没服用

20

30

50

服用

x

y

50

总计

M

N

100

    设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过

   (1)求出列联表中数据的值;

   (2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;

   (3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。

        参考公式:

        参考数据:

0.05

0.025

0.010

3.841

5.024

6.635

 

 

查看答案和解析>>

(本题满分12分)
为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:

 
感染
未感染
总计
没服用
20
30
50
服用
x
y
50
总计
M
N
100
   设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过
 (1)求出列联表中数据的值;
(2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;
(3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。
参考公式:
   参考数据:

0.05
0.025
0.010

3.841
5.024
6.635
 

查看答案和解析>>

(本题满分12分)
为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
 
感染
未感染
总计
没服用
20
30
50
服用
x
y
50
总计
M
N
100
   设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过
 (1)求出列联表中数据的值;
(2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;
(3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。
参考公式:
   参考数据:

0.05
0.025
0.010

3.841
5.024
6.635
 

查看答案和解析>>

设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且+2

 (1)求数列{}的通项公式;

 (2)设数列{}的前n项和为,求证:<

【解析】+2求出,由=n-2n(n-1)递写一个式子相减,得{}为等差数列;(2)裂项法求,然后证明<

 

查看答案和解析>>


同步练习册答案