19.解:(I)当点E为BC的中点时.EF与平面PAC平行. 中.E.F分别为BC.PB的中点. 而平面PAC.EF//平面PAC ----4分 (II)证明:平面ABCD.BE平面ABCD. 又平面PAB. 又平面PAB. 又PA=PB=1.点F是PB的中点. 又PBE. 平面PBE. 平面PBE. ----8分 (3)过A作AG⊥DE于G.连PG. 又∵DE⊥PA.则DE⊥平面PAG. 则∠PGA是二面角P-DE-A的二面角. . ∵PD与平面ABCD所成角是. 则 在. 得 ----12分 注:其它方法可参考本题标准 查看更多

 

题目列表(包括答案和解析)

(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点. 
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
x=4cosθ
y=4sinθ
(θ为参数),直线l经过点p(2,2),倾斜角a=
π
3

(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

(2012•济宁一模)已知函数g(x)=
1
3
ax3+
1
2
x2+b,f(x)=g′(x)ex
,其中e为自然对数的底数
(I)若函数g(x)在点(1,g(1))处的切线与直线2x-y+1=0垂直,求实数a的值;
(II)若f(x)在[-1,1]上是单调增函数,求实数a的取值范围;
(III)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点. 
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为(θ为参数),直线l经过点p(2,2),倾斜角a=
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

已知函数g(x)=
1
3
ax3+
1
2
x2+b,f(x)=g′(x)ex
,其中e为自然对数的底数
(I)若函数g(x)在点(1,g(1))处的切线与直线2x-y+1=0垂直,求实数a的值;
(II)若f(x)在[-1,1]上是单调增函数,求实数a的取值范围;
(III)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>


同步练习册答案