21.如图.已知椭圆的中心在原点.焦点在轴上.长轴长是短轴长的2倍且经过点M(2,1).平行于OM的直线l在轴上的截距为.l交椭圆于A.B两个不同点. (1)求椭圆的方程, (2)求m的取值范围, (3)求证直线MA.MB与轴始终围成一个等腰三角形. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

如图,已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,且经过点M(4,1).直线l:y=x+m交椭圆于A,B两不同的点.
(1)求椭圆的方程;
(2)当|AB|=
12
5
2
时,求m的值;
(3)若直线l不过点M,求证:直线MA,MB与x轴围成一个等腰三角形.

查看答案和解析>>

(14分)如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线轴上的截距为交椭圆于两个不同点

(1)求椭圆的方程;

(2)求的取值范围;

(3)求证直线轴始终围成一个等腰三角形。

查看答案和解析>>

如图,已知椭圆的中心在原点,焦点在x轴上,离心率为数学公式,且经过点M(4,1).直线l:y=x+m交椭圆于A,B两不同的点.
(1)求椭圆的方程;
(2)当|AB|=数学公式时,求m的值;
(3)若直线l不过点M,求证:直线MA,MB与x轴围成一个等腰三角形.

查看答案和解析>>

如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线 l 在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).
(Ⅰ)求椭圆的方程;
(Ⅱ)当MA⊥MB时,求m的值.

查看答案和解析>>


同步练习册答案