D.若拉力F的方向沿y轴正方向.则此时F有最小值.其值为 查看更多

 

题目列表(包括答案和解析)

如图所示,质量为m的长方体物块放在水平放置的钢板C上,物块与钢板间的动摩擦因数为μ,由于光滑固定导槽A、B的控制,该物块只能沿水平导槽运动.现使钢板以速度V1向右匀速运动,同时用水平力F拉动物块使其以速度V2(V2的方向与V1的方向垂直,沿y轴正方向)沿槽匀速运动,以下说法中正确的是

A.若拉力F的方向在第I象限,则其大小一定大于mgμ

B.若拉力F的方向在第Ⅱ象限,则其大小可能小于mgμ

C.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为μmg

D.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为μmg

查看答案和解析>>

如图所示,质量为M的长方体物块放在水平放置的钢板C上,物块与钢板间的动摩擦因数为μ,由于光滑固定导槽A、B的控制,该物块只能沿水平导槽运动.现使钢板以速度v1向右匀速运动,同时用水平力F拉动物块使其以速度v2(v2的方向与vl的方向垂直,沿y轴正方向)沿槽匀速运动,以下说法正确的是

A.若拉力F的方向在第-象限,则其大小一定大于μmg

B.若拉力F的方向在第二象限,则其大小可能小于μmg

C.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为μmg

D.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为μmg

查看答案和解析>>

(1)某同学用半圆形玻璃砖测定玻璃的折射率(如图所示).实验的主要过程如下:
a.把白纸用图钉钉在木板上,在白纸上作出直角坐标系xOy,在白纸上画一条线段 AO表示入射光线.
b.把半圆形玻璃砖M放在白纸上,使其底边aa′与Ox轴重合.
c.用一束平行于纸面的激光从y>0区域沿y轴负方向射向玻璃砖,并沿x轴方向调整玻璃砖的位置,使这束激光从玻璃砖底面射出后,仍沿y轴负方向传播.
d.在AO线段上竖直地插上两枚大头针P1、P2
e.在坐标系的y<0的区域内竖直地插上大头针P3,并使得从P3一侧向玻璃砖方向看去,P3能同时挡住观察P1和P2的视线.
f.移开玻璃砖,作OP3连线,用圆规以O点为圆心画一个圆(如图中虚线所示),此圆与AO线交点为B,与OP3连线的交点为C.确定出B点到x轴、y轴的距离分别为x1、y1、,C点到x轴、y轴的距离分别为x2、y2
①根据上述所确定出的B、C两点到两坐标轴的距离,可知此玻璃折射率测量值的表达式为n=
 

②若实验中该同学在y<0的区域内,从任何角度都无法透过玻璃砖看到P1、P2,其原因可能是:
 

(2)在“用单摆测重力加速度”的实验中,某同学的主要操作步骤如下:
a.取一根符合实验要求的摆线,下端系一金属小球,上端固定在O点;
b.在小球静止悬挂时测量出O点到小球球心的距离l;
c.拉动小球使细线偏离竖直方向一个不大的角度(约为5°),然后由静止释放小球;
d.用秒表记录小球完成n次全振动所用的时间t.
①用所测物理量的符号表示重力加速度的测量值,其表达式为g=
 

②若测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是
 
.(选填下列选项前的序号)
A.测量摆长时,把摆线的长度当成了摆长
B.摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长
C.测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,并由计算式T=t/n求得周期
D.摆球的质量过大
③在与其他同学交流实验方案并纠正了错误后,为了减小实验误差,他决定用图象法处理数据,并通过改变摆长,测得了多组摆长l和对应的周期T,并用这些数据作出T2-l图象如图甲所示.若图线的斜率为k,则重力加速度的测量值g=
 

④这位同学查阅资料得知,单摆在最大摆角θ较大时周期公式可近似表述为T=2π
l
g
(1+
1
4
sin2
θ
2
).为了用图象法验证单摆周期T和最大摆角θ的关系,他测出摆长为l的同一单摆在不同最大摆角θ时的周期T,并根据实验数据描绘出如图乙所示的图线.根据周期公式可知,图乙中的纵轴表示的是
 
,图线延长后与横轴交点的横坐标为
 

精英家教网

查看答案和解析>>

(1)某同学用半圆形玻璃砖测定玻璃的折射率(如图所示).实验的主要过程如下:
a.把白纸用图钉钉在木板上,在白纸上作出直角坐标系xOy,在白纸上画一条线段 AO表示入射光线.
b.把半圆形玻璃砖M放在白纸上,使其底边aa′与Ox轴重合.
c.用一束平行于纸面的激光从y>0区域沿y轴负方向射向玻璃砖,并沿x轴方向调整玻璃砖的位置,使这束激光从玻璃砖底面射出后,仍沿y轴负方向传播.
d.在AO线段上竖直地插上两枚大头针P1、P2
e.在坐标系的y<0的区域内竖直地插上大头针P3,并使得从P3一侧向玻璃砖方向看去,P3能同时挡住观察P1和P2的视线.
f.移开玻璃砖,作OP3连线,用圆规以O点为圆心画一个圆(如图中虚线所示),此圆与AO线交点为B,与OP3连线的交点为C.确定出B点到x轴、y轴的距离分别为x1、y1、,C点到x轴、y轴的距离分别为x2、y2
①根据上述所确定出的B、C两点到两坐标轴的距离,可知此玻璃折射率测量值的表达式为n=______.
②若实验中该同学在y<0的区域内,从任何角度都无法透过玻璃砖看到P1、P2,其原因可能是:______.
(2)在“用单摆测重力加速度”的实验中,某同学的主要操作步骤如下:
a.取一根符合实验要求的摆线,下端系一金属小球,上端固定在O点;
b.在小球静止悬挂时测量出O点到小球球心的距离l;
c.拉动小球使细线偏离竖直方向一个不大的角度(约为5°),然后由静止释放小球;
d.用秒表记录小球完成n次全振动所用的时间t.
①用所测物理量的符号表示重力加速度的测量值,其表达式为g=______;
②若测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是______.(选填下列选项前的序号)
A.测量摆长时,把摆线的长度当成了摆长
B.摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长
C.测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,并由计算式T=t/n求得周期
D.摆球的质量过大
③在与其他同学交流实验方案并纠正了错误后,为了减小实验误差,他决定用图象法处理数据,并通过改变摆长,测得了多组摆长l和对应的周期T,并用这些数据作出T2-l图象如图甲所示.若图线的斜率为k,则重力加速度的测量值g=______.
④这位同学查阅资料得知,单摆在最大摆角θ较大时周期公式可近似表述为T=2(1+sin2).为了用图象法验证单摆周期T和最大摆角θ的关系,他测出摆长为l的同一单摆在不同最大摆角θ时的周期T,并根据实验数据描绘出如图乙所示的图线.根据周期公式可知,图乙中的纵轴表示的是______,图线延长后与横轴交点的横坐标为______

查看答案和解析>>

如图所示,质量为m的长方体物块放在水平放置的钢板C上,物块与钢板间的动摩擦因数为μ,由于光滑固定导槽A、B的控制,该物块只能沿水平导槽运动.现使钢板以速度v1向右匀速运动,同时用水平力F拉动物块使其以速度v2(v2的方向与v1的方向垂直,沿y轴正方向)沿槽匀速运动,以下说法正确的是:

A.若拉力F的方向在第一象限,则其大小一定大于μmg      

B.若拉力F的方向在第二象限,则其大小可能小于μmg   

C.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为

D.若拉力F的方向沿y轴正方向,则此时F有最小值,其值为

查看答案和解析>>

题号

1

2

3

4

5

6

答案

B

D

C

A

B

BC

题号

7

8

9

 

 

答案

BC

BD

AD

 

 

 

10.(8分)8.472;10.040;

 

11. (10分)(1)从实验装置看,该同学所用交流电的电压为 _220  伏特,操作步骤中释放纸带和接通电源的先后顺序应该是 _先接通电源后释放纸带 (每空1分,共2分)

 

(2)从数据处理方法看,在S1、S2、S3、S4、S5、S6中,对实验结果起作用的,方法A中有 _ S1S6; 方法B中有S1S2S3S4S5S6。因此,选择方法 _B (A或B)更合理,这样可以减少实验的 _偶然  (系统或偶然)误差。(每空1分,共4分)

 (3)本实验误差的主要来源有(试举出两条). (每答对1条得2分,共4分)

     重物下落过程中受到阻力;      S1S2S3S4S5S6 长度测量;

交流电频率波动;             数据处理方法等。

12、(11分)

(1)水果电池的内阻太大。(1分)

(2)(6分)晓宇的方法不正确(1分),因水果电池本身有电动势(1分),当用欧姆表直接接“土豆电池”的两极时,欧姆表内部的电源与水果电池的电动势正向或反向串联,影响测量的结果,故测不准(1分)。

小丽同学测量的误差也很大(1分)。理想状态下用电流表测得的是短路电流,伏特表测得的应当是电源电动势,但由于水果电池的内阻很大,伏特表的内阻不是远大于水果电池的内阻(1分),故其测得的电动势误差大,算得的内阻亦不准确(1分)。

(3)①B(1分)、G(1分)

        ②(2分)

 

13.(14分)(1)1.0m/s2;(2)25m/s ;(3)10s 

 

14.(14分)

解析:(1)由0-v2=-2as 得

加速度大小a===0.05m/s2 (4分)

(2)由牛顿第二定律得

 f+F=ma

 故f=ma-F=3×106×0.05-9×104=6×104N (4分)

(3)由P=Fv得

 P=f?vm

 故P=6×104×20=1.2×106W       (4分)

(4)由动能定理得:

 Pt-fs1=mv2m

代入数据解得:s110km

故总行程s=s1+s214km        (2分)

 

15. (16分)解:对薄板由于Mgsin37?m(M+m)gcos37故滑块在薄板上滑动时,薄板静止不动.

对滑块:在薄板上滑行时加速度a=gsin37=6m/s,至B点时速度V==6m/s。

滑块由B至C时的加速度a= gsin37-mgcos37=2 m/s,滑块由B至C用时t,由L=Vt+at

即t+6t-7=0  解得t=1s

对薄板:滑块滑离后才开始运动,加速度a= gsin37-mgcos37=2 m/s,滑至C端用时t==s

故滑块、平板下端B到达斜面底端C的时间差是△t= t-t=-1=1.65s

 

16.(16分) (1)设A、B下落H高度时速度为υ,由机械能守恒定律得:                   (1分)

B着地后,A先向下运动,再向上运动到,当A回到B着地时的高度时合外力为0,对此过程有:    (1分)

解得:                            (1分)

(2)B物块恰能离开地面时,弹簧处于伸长状态,弹力大小等于mg,B物块刚着地解除弹簧锁定时,弹簧处于压缩状态,弹力大小等于mg.因此,两次弹簧形变量相同,则这两次弹簧弹性势能相同,设为EP.                         (2分)

又B物块恰能离开地面但不继续上升,此时A物块速度为0.

从B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块和弹簧组成的系统机械能守恒,即:

(2分)解得:Δx=H  (2分)

(3)因为B物块刚着地解除弹簧锁定时与B物块恰能离开地面时弹簧形变量相同,所以弹簧形变量     (1分)

第一次从B物块着地到弹簧恢复原长过程中,弹簧和A物块组成的系统机械能守恒: (2分)

第二次释放A、B后,A、B均做自由落体运动,由机械能守恒得刚着地时A、B系统的速度为       (1分)

从B物块着地到B刚要离地过程中,弹簧和A物块组成的系统机械能守恒:        (2分)

联立以上各式得:                (1分)

 


同步练习册答案