解得:λ=. ----------------11分 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

某种产品的广告支出x与销售额y(单位:百万元)之间有如下的对应关系

x

2

4

5

6

8

y

30

40

60

50

70

(1)假定xy之间具有线性相关关系,求回归直线方程.

(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

已知二次函数的二次项系数为,且不等式的解集为,

(1)若方程有两个相等的根,求的解析式;

(2)若的最大值为正数,求的取值范围.

【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),

设出二次函数的解析式,然后利用判别式得到a的值。

第二问中,

解:(1)∵f(x)+2x>0的解集为(1,3),

   ①

由方程

              ②

∵方程②有两个相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故当f(x)的最大值为正数时,实数a的取值范围是

 

查看答案和解析>>

已知命题p:关于x的方程2x=
3+a5-a
有负根;命题q:不等式|x+1|+|x-1|<a的解集为∅,若p或q是真命题,p且q是假命题,求实数a的范围.

查看答案和解析>>


同步练习册答案