解得n=3.即盒中有“会徽卡 3张.-------------------3分 查看更多

 

题目列表(包括答案和解析)

某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数,(本小题满分14分)

(1)根据以上数据,求出的解析式。

(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,

∴A+b=13,   -A+b=7   解得  A=3,  b=10

第二问要想船舶安全,必须深度,即

       

解得: 得到结论。

 

查看答案和解析>>

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

是直角坐标系中,x轴、y轴正方向上的单位向量,设  

(1)若(,求.

(2)若时,求的夹角的余弦值.

(3)是否存在实数,使,若存在求出的值,不存在说明理由.

【解析】第一问中,利用向量的数量积为0,解得为m=-2

第二问中,利用时,结合向量的夹角的余弦值公式解得

第三问中,利用向量共线,求解得到m不存在。

(1)因为设是直角坐标系中,x轴、y轴正方向上的单位向量,设  

(2)因為

(3)假設存在实数,使,則有

因此不存在;

 

查看答案和解析>>

盒中有6个小球,3个白球,记为a1,a2,a3,2个红球,记为b1,b2,1个黑球,记为c1,除了颜色和编号外,球没有任何区别.
(1) 求从盒中取一球是红球的概率;
(2) 从盒中取一球,记下颜色后放回,再取一球,记下颜色,若取白球得1分,取红球得2分,取黑球得3分,求两次取球得分之和为5分的概率.

查看答案和解析>>


同步练习册答案