已知.如图.四边形ABCD是正方形.点C的坐标是(4.0).动点P沿折线OACB方向运动.Q沿折线OBCA方向运动. .B点的坐标为. (2)若P.Q运动速度都是每秒一个单位长.当P运动到A点停止.Q也随之停止.设△PQO的面积为S.运动时间为t秒.求S与t的函数关系式. (3) 若P点运动速度是每秒1个单位长.Q的运动速度是每秒2个单位长.运动到相遇时停止.设△PQO的面积为S.运动时间为t秒.求S与t的函数关系式. (4)若Q的运动速度是P点运动速度的2倍.以A.P.B.Q四点为顶点的四边形是平行四边形.求直线PQ的解析是式. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

1.(1)若取AE的中点P,求证:BP=CF;

2.(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;

3.(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

 

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

【小题1】(1)若取AE的中点P,求证:BP=CF;
【小题2】(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
【小题3】(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

【小题1】(1)若取AE的中点P,求证:BP=CF;
【小题2】(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
【小题3】(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>

(本小题满分14分)

如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

1.(1)若取AE的中点P,求证:BP=CF;

2.(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;

3.(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

 

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>


同步练习册答案