题目列表(包括答案和解析)
设函数f(x)=在[1,+∞上为增函数.
(1)求正实数a的取值范围;
(2)比较的大小,说明理由;
(3)求证:(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立
∴ax-1≥0对x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上为增函数,
∴n≥2时:f()=
(3) ∵ ∴
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。
【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。
解:(1),
因为在其定义域内的单调递增函数,
所以 内满足恒成立,即恒成立,
亦即,
即可 又
当且仅当,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是.
(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设
上的增函数,依题意需
实数k的取值范围是
(08年滨州市质检三文) 给出如下三个命题:①设a,b∈R,且ab≠0,若a>b,则;②四个非零实数a,b,c,d依次成等比数列的充要条件是ad=bc;③圆上任意一点M关于直线的对称点也在该圆上;④已知函数,则对恒成立的t的取值范围是t≥1.
其中正确命题的个数为 ( )
A.1 B.2 C.3 D.0
已知函数,.
(Ⅰ)若函数依次在处取到极值.求的取值范围;
(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.
【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。
解:(1)
①
(2)不等式 ,即,即.
转化为存在实数,使对任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
设,则.
设,则,因为,有.
故在区间上是减函数。又
故存在,使得.
当时,有,当时,有.
从而在区间上递增,在区间上递减.
又[来源:]
所以当时,恒有;当时,恒有;
故使命题成立的正整数m的最大值为5
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com