题目列表(包括答案和解析)
n(n+1)(2n+1) |
6 |
4n3-n |
3 |
17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.
“function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.
莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.
当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.
随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.
综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.
你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?
1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?
2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?
选择题.
(1)
由,确定的等差数列,当时,序号n等于[
]
(A)99 . |
(B)100 . |
(C)96 . |
(D)101 . |
(2)
一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.[
]
(A)55986 . |
(B)46656 . |
(C)216 . |
(D)36 . |
(3)
预测人口的变化趋势有多种方法,“直接推算法”使用的公式是,其中为预测期人口数,为初期人口数,k为预测期内年增长率,n为预测期间隔年数.如果在某一时期有-1<k<0,那么在这期间人口数[
]
(A) 呈上升趋势. |
(B) 呈下降趋势. |
(C) 摆动变化. |
(D) 不变. |
(4)
《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小1份为[
]
(A) . |
(B) . |
(C) . |
(D) . |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com