若a,b∈R,求证:≤+. 证明 当|a+b|=0时.不等式显然成立. 当|a+b|≠0时.由0<|a+b|≤|a|+|b|≥, 所以=≤=≤+. 查看更多

 

题目列表(包括答案和解析)

已知a>0,b∈R,函数
(Ⅰ)证明:当0≤x≤1时,
(i)函数的最大值为|2a-b|﹢a;
(ii)+|2a-b|﹢a≥0;
(Ⅱ)若-1≤≤1对x∈[0,1]恒成立,求a+b的取值范围。

查看答案和解析>>

已知a>0,b∈R,函数f(x)=4ax3-2bx-a+b.
(Ⅰ)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a-b|+a;
(ii)f(x)+|2a-b|+a≥0;
(Ⅱ)若-1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.

查看答案和解析>>

(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3-2bx-a+b.
(Ⅰ)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a-b|+a;
(ii)f(x)+|2a-b|+a≥0;
(Ⅱ)若-1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.

查看答案和解析>>

已知定点F1(-
3
,0),F2
3
,0),动点R在曲线C上运动且保持|RF1|+|RF2|的值不变,曲线C过点T(0,1),
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.

查看答案和解析>>

函数,其中a为常数.

(1)证明:对任意a∈R,函数y=f(x)图像恒过定点;

(2)当a=1时,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求实数b的取值范围;

(3)若对任意a∈[m,0)时,函数y=f(x)在定义域上恒单调递增,求m的最小值.

查看答案和解析>>


同步练习册答案