在△中,如果.求的四个三角函数值. 解:(1)∵ a 2+b 2=c 2 ∴ c = ∴sinA = cosA = tanA = cotA = 查看更多

 

题目列表(包括答案和解析)

在△中,如果,求的四个三角函数值.

解:(1)∵ a 2+b 2c 2

c =                                               

             ∴sinA =              cosA =         

∴tanA =           cotA =              

查看答案和解析>>

在△中,如果,求的四个三角函数值.

解:(1)∵ a 2+b 2c 2

c =                                               

             ∴sinA =              cosA =         

∴tanA =           cotA =              

查看答案和解析>>

精英家教网如图,在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:
(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
(2)设四边形PQCB的面积为y(cm2),直接写出y与t之间的函数关系式;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知Rt△ABC中,∠A=30°,AC=6,边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线精英家教网),使边DF、EF与边AB分别相交于点M、N(M、N不与A、B重合).
(1)求证:△ADM是等腰三角形;
(2)设AD=x,△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围;
(3)是否存在一个以M为圆心,MN为半径的圆与边AC、EF同时相切?如果存在,请求出圆的半径;如果不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知抛物线顶点N的坐标为(数学公式),此抛物线交y轴于B(0,-4),交x轴于A、C两点且A点在C点左边.
(1)求抛物线解析式及A、C两点的坐标.
(2)如果点M为第三象限内抛物线上一个动点且它的横坐标为m,设△AMB的面积为S,求S关于m的函数关系式并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置使得以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>


同步练习册答案