不等式的性质是证明不等式和解不等式的基础. 不等式的基本性质有: 对称性:a>bb<a, 传递性:若a>b.b>c.则a>c, 可加性:a>ba+c>b+c, 可乘性:a>b.当c>0时.ac>bc,当c<0时.ac<bc. 不等式运算性质: 同向相加:若a>b.c>d.则a+c>b+d, 异向相减:.. 正数同向相乘:若a>b>0.c>d>0.则ac>bd. (4)乘方法则:若a>b>0.n∈N+.则, (5)开方法则:若a>b>0.n∈N+.则, (6)倒数法则:若ab>0.a>b.则.2.基本不等式,利用完全平方式的性质.可得a2+b2≥2ab.该不等式可推广为a2+b2≥2|ab|,或变形为|ab|≤, 当a.b≥0时.a+b≥或ab≤. 查看更多

 

题目列表(包括答案和解析)

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>


同步练习册答案