3.注意等差.等比数列的前n项和的特征在解题中的应用, 查看更多

 

题目列表(包括答案和解析)

 下列关于等差、等比数列的判断,正确的是     (    )

    A.若对任意的都有(常数),则数列为等差数列(

    B.数列一定是等差数列,也一定是等比数列

    C.若均为等差数列,则也是等差数列     

    D.对于任意非零实数,它们的等比中项一定存在且为

 

查看答案和解析>>

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且Sn=an-1(a∈R),则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是
②③④⑤
②③④⑤
.(请将正确命题的序号都填上)

查看答案和解析>>

若数列{an}中,对任意n∈N*,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为等差比数列.下列对“等差比数列”的判断:
①k不可能为0;
②等差数列一定是等差比数列;
③等比数列一定是等差比数列;
④通项公式为an=a•bn+c(a≠0,b≠0,1)的数列一定是等差比数列.
其中正确的判断为(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

(2012•桂林一模)对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).规定{△2an}为{an}的二阶差分数列,其中△2an=△an+1-△an
(Ⅰ)已知数列{an}的通项公式an=n2+n(n∈N*),试判断{△an},{△2an}是否为等差或等比数列,并说明理由;
(Ⅱ)若数列{an}首项a1=1,且满足2an-△an+1+an=-2n(n∈N*),求数列{an}的通项公式.

查看答案和解析>>


同步练习册答案