一般地讲.算法是人们解决问题的固定步骤和方法.在本模块中.我们应重点掌握的是在数值计算方面的算法. 高考新课程标准数学考试大纲对的要求是: (1)算法的含义.流程图:①了解算法的含义.了解算法的思想,②理解流程图的三种基本逻辑结构:顺序结构.选择结构.循环结构. (2)基本算法语句:理解几种基本算法语句--输入语句.输出语句.赋值语句.选择语句.循环语句的含义. 注意的是.考纲对算法的含义和算法的思想的要求是“了解 .而对流程图和基本算法语句的要求是“理解 .由此可见.复习中应把重点放在流程图和基本算法语句上.要对这两方面的内容重点掌握.多加练习. 表达算法的方法有自然语言.流程图和基本算法语句三种.自然语言描述算法只是学习算法的一个过渡.流程图和基本算法语句才是学习的重点.同时也是难点.尤其是选择结构和循环结构.在复习中是重中之重. 查看更多

 

题目列表(包括答案和解析)

从特殊到一般和从一般到特殊,这是人们正确认识客观事物的认识规律,也是处理数学问题的重要思想方法.从这一思想出发,我们知道两角和的正弦为:sin(α+β)=sinαcosβ+cosαsinβ,那么现在我们令α=β,在这种特殊情况下我们可以得到公式sin2α=2sinαcosα,同理其余几种三角函数也可以做类似的推理,本节我们就来研究一下有关倍角的公式.你能利用上述知识解决下面的问题吗?

已知sinα=,α∈(,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

(1)子集的定义:对于两个集合AB,如果集合A的任意一个元素都是集合B的元素,我们就说集合A     集合B,或集合B     集合A,也可以说集合A是集合B的子集.记作          ,如果集合A不包含于集合B,或集合B不包含集合A,就记作     .?

规定:空集是任何集合的子集, .?

如果AB,并且AB,称集合A是集合B的,记作     .?

(2)交集的定义:一般地,由属于集合A     属于集合B的元素所组成的集合,叫做AB的交集.记作     (读作“AB”),即AB={x|xAxB}.?

(3)并集的定义:一般地,由属于集合A     属于集合B的元素所组成的集合,叫做AB的并集.记作     (读作“AB”),即AB={x|xAxB}).?

(4)补集的定义:一般地,设S是一个集合,AS的一个子集,由S中所有     A的元素组成的集合,叫做S中子集A的补集(或余集),记作     .?

 

查看答案和解析>>

杨辉是中国南宋末年的一位杰出的数学家、数学教育家.他的数学著作颇多,他编著的数学书共5种21卷,在他的著作中收录了不少现已失传的古代数学著作中的算题和算法.他的数学研究与教育工作的重点是在计算技术方面.杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴涵了许多优美的规律.古今中外,许多数学家如贾宪、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作.下图是一个11阶的杨辉三角:

 

试回答:(其中第(1)&(5)小题只需直接给出最后的结果,无需求解过程)

(1)记第i(i∈N*)行中从左到右的第j(j∈N*)个数为aij,则数列{aij}的通项公式为          ,

n阶杨辉三角中共有           个数;

(2)第k行各数的和是;

(3)n阶杨辉三角的所有数的和是;

(4)将第n行的所有数按从左到右的顺序合并在一起得到的多位数等于;

(5)第p(p∈N*,且p≥2)行除去两端的数字1以外的所有数都能被p整除,则整数p一定为(   )

A.奇数                B.质数              C.非偶数                D.合数

(6)在第3斜列中,前5个数依次为1、3、6、10、15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:

m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.

试用含有mk(mk∈N*)的数学公式表示上述结论并证明其正确性.

数学公式为                   .

证明:                        .

查看答案和解析>>

(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

(2006•蚌埠二模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)

查看答案和解析>>


同步练习册答案