了解可导函数的单调性与其导数的关系, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数

(1)求;         (2)求的最大值与最小值.

【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。

第二问中,利用第一问的导数,令导数为零,得到

然后结合导数,函数的关系判定函数的单调性,求解最值即可。

 

查看答案和解析>>

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

(本小题满分14分)已知函数有如下性质:如果常数>0,那么该

 

函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

 

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

 

(3)对函数(常数>0)作出推广,使它们都是你所推广的

 

函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你

 

的研究结论).

 

查看答案和解析>>

设函数=为自然对数的底数),,记

(1)的导函数,判断函数的单调性,并加以证明;

(2)若函数=0有两个零点,求实数的取值范围.

 

查看答案和解析>>


同步练习册答案