在不大于1的正有理数中任取100个数.在这个问题中.总体.个体.样本.样本容量各指什么? 查看更多

 

题目列表(包括答案和解析)

精英家教网已知关于x的二次函数f(x)=x2+ax-b(a,b∈R).
(Ⅰ)当b=-2时,由于对任意的x∈R,函数f(x)的值总大于零,求实数a的取值范围;
(Ⅱ)如果方程f(x)=0有一个负根和一个不大于1的正根,求实数a,b满足的条件,并在右图所给坐标系中画出点(a,b)所在的平面区域;
(Ⅲ)在第(Ⅱ)问的条件下,若实数k满足b=k(a+1)+3,求k的取值范围.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?请说明你的理由.

查看答案和解析>>

某远洋捕渔船到远海捕鱼,由于远海渔业资源丰富,每撒一次网都有w万元的收益;同时,又由于远海风云未测,每撒一次网存在遭遇沉船事故的可能,其概率为(常数k为大于1的正整数).假定,捕鱼船吨位很大,可以装下n次撒网所捕的鱼,而在每次撒网时,发生不发生沉船事故与前一次撒网无关,若发生沉船事故,则原来所获的收益将随船的沉没而不存在,又已知船长计划在此处撒网n次.

(1)当n=3时,求捕鱼收益的期望值;

(2)试求n的值,使这次远洋捕鱼收益的期望值达到最大.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得成立?请说明你的理由.

查看答案和解析>>

必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

第Ⅰ卷   选择题(共50分)

一、选择题(本大题共10小题,每小题5分,满分50分)

1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、计算复数(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>


同步练习册答案