2.能借助几何直观解决一些简单的线性规划问题 查看更多

 

题目列表(包括答案和解析)

《孙子算经》中有这样一道题目:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”你能设计一个程序解决这个问题吗?

查看答案和解析>>

已知问题:上海迪斯尼工程某 施工工地上有一堵墙,工程队欲将长为4a(a>0)的建筑护栏(厚度不计)借助这堵墙围成矩形的施工区域(如图1),求所得区域的最大面积.解决这一问题的一种方法是:作出护栏关于墙面的轴对称图形(如图2),则原问题转化为“已知矩形周长为8a,求面积的最大值”从而轻松获解.参考这种借助对称图形解决问题的方法,对于下列情形:已知两堵墙互相垂直围成“L”形,工程队将长为4a(a>0)的建筑护栏借助墙角围成四边形的施工区域(如图3),可求得所围区域的最大面积为
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

小明家中有两种酒杯,一种酒杯的轴截面是等腰直角三角形,称之为直角酒杯,另一种酒杯的轴截面近似一条抛物线,杯口宽4 cm,杯深为8 cm,称之为抛物线酒杯.

(1)请选择适当的坐标系,求出抛物线酒杯的方程.

(2)一次,小明在游戏中注意到一个现象,若将一些大小不等的玻璃球依次放入直角酒杯中,则任何玻璃球都不能触及酒杯杯底.但若将这些玻璃球放入抛物线酒杯中,则有些小玻璃球能触及酒杯杯底.小明想用所学数学知识研究一下,当玻璃球的半径r为多大值时,玻璃球一定会触及酒杯杯底.你能帮助小明解决这个问题吗?

(3)在抛物线酒杯中,放入一根粗细均匀、长度为2 cm的细棒,假设细棒的端点与酒杯壁之间的摩擦可以忽略不计,那么当细棒最后达到平衡状态时,细棒在酒杯中位置如何?

查看答案和解析>>

从特殊到一般和从一般到特殊,这是人们正确认识客观事物的认识规律,也是处理数学问题的重要思想方法.从这一思想出发,我们知道两角和的正弦为:sin(α+β)=sinαcosβ+cosαsinβ,那么现在我们令α=β,在这种特殊情况下我们可以得到公式sin2α=2sinαcosα,同理其余几种三角函数也可以做类似的推理,本节我们就来研究一下有关倍角的公式.你能利用上述知识解决下面的问题吗?

已知sinα=,α∈(,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

小明家中有两种酒杯,一种酒杯的轴截面是等腰直角三角形,称之为直角酒杯(如图1),另一种酒杯的轴截面近似一条抛物线,杯口宽4 cm,杯深为8 cm(如图2),称之为抛物线酒杯.

(1)请选择适当的坐标系,求出抛物线酒杯的方程.

(2)一次,小明在游戏中注意到一个现象,若将一些大小不等的玻璃球依次放入直角酒杯中,则任何玻璃球能触及酒杯杯底.但若将这些玻璃球放入抛物线酒杯中,则有些小玻璃不能触及酒杯杯底.小明想用所学过数学知识研究一下,当玻璃球的半径r为多大值时,玻璃球一定会触及酒杯杯底部.你能帮助小明解决这个问题吗?

(3)在抛物线酒杯中,放入一根粗细均匀,长度为2 cm的细棒,假设细棒的端点与酒杯壁之间的摩擦可以忽略不计,那么当细棒最后达到平衡状态时,细棒在酒杯中位置如何?

查看答案和解析>>


同步练习册答案