在大自然中鹿.兔奔跑速度快.能逃避猛兽追捕,刺猬身上长尖刺.使猛兽无从下口,黄鼬遇敌时突放臭气,扰乱猛兽神志.影响其情绪.在其迟疑间跑掉.这是生态系统基本特性中的( ) A.整体性 B.相关性 C.动态性 D.环境适应性 查看更多

 

题目列表(包括答案和解析)

“三鹿”等乳品,为了提高蛋白质检测含量,在产品中添加化学制剂三聚氰胺,导致许多“结石婴儿”出现,这是严重欺诈消费者的行为。这个案例说明          (   )

①企业应该诚实守信,尊重消费者的合法权益

②市场调节具有局限性

③建立健全市场经济秩序离不开国家的宏观调控 

④市场经济秩序的建立离不开良好的市场道德

查看答案和解析>>

动物中的数学“天才”

  蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.

  丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

  蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案.

  冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.

  真正的数学“天才”是珊瑚虫.珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条.奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”.天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天.

1.同学们,大自然中有许多有关数学的奥妙,许多现象有意无意地应用着数学,对于这些现象你有什么看法吗?请你谈谈你对大自然中的数学现象的认识.

2.把你发现的大自然中的数学问题告诉你的同学和老师,让他们也分享一下你认识大自然的乐趣.

查看答案和解析>>

在△ABC中,已知A(2,3),角B的平分线为Y轴,角C的平分线为l:x+y=4,求BC边所在的直线方程

查看答案和解析>>

在△ABC中,内角A、B、C所对的边分别为a、b、c,已知A=
π
6
,c=
3
,b=1.
(Ⅰ)求a的长及B的大小;
(Ⅱ)若0<x≤B,求函数f(x)=2sinxcosx+2
3
cos2x-
3
的值域.

查看答案和解析>>

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>


同步练习册答案