双曲线的定义 (1)双曲线的第一定义:平面内与两定点F1.F2的距离差的绝对值等于常数2a(0<2a<|F1F2|)的点的轨迹叫双曲线.两定点F1.F2是焦点.两焦点间的距离|F1F2|是焦距.用2c表示.常数用2a表示. (2)双曲线的第二定义:若点M到一个定点的距离和它到一条定直线的距离的比是一个常数e 查看更多

 

题目列表(包括答案和解析)

精英家教网我们定义双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与直线y=±b的交点为“虚近点”,如图点P是双曲线C在第一象限的渐近点,直线y=b与双曲线C的左、右分支分别交于点A、B,F1、F2分别是双曲线C的左、右焦点,O为坐标原点.
(1)求证:PF1⊥PF2
(2)求证:PF1平分∠APO;
(3)你能否在未证明(1)下,直接证明(2)?请写下你的理由.

查看答案和解析>>

我们定义双曲线C:=1(a>0,b>0)的渐近线与直线y=±b的交点为“虚近点”,如图点P是双曲线C在第一象限的渐近点,直线y=b与双曲线C的左、右分支分别交于点A、B,F1、F2分别是双曲线C的左、右焦点,O为坐标原点.
(1)求证:PF1⊥PF2
(2)求证:PF1平分∠APO;
(3)你能否在未证明(1)下,直接证明(2)?请写下你的理由.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

 

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>


同步练习册答案