不等式解法的基本思路 解不等式的过程.实质上是同解不等式逐步代换化简原不等式的过程.因而保持同解变形就成为解不等式应遵循的主要原则.实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式.所以等价转化是解不等式的主要思路.代数化.有理化.整式化.低次化是解初等不等式的基本思路.为此.一要能熟练准确地解一元一次不等式和一元二次不等式.二要保证每步转化都要是等价变形. 查看更多

 

题目列表(包括答案和解析)

圆内接四边形判定定理的证明,推导出与圆内接四边形性质定理相矛盾的结果,体现了用反证法证明几何命题的基本思路.反证法是证明问题的有效方法,那么与正面证明相比较,反证法有什么特点?它证明问题的步骤怎样?它有什么优点?

查看答案和解析>>

解决优化问题的基本思路是什么?

查看答案和解析>>

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是
 

查看答案和解析>>

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“寻找x与y的关系,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是(  )
A、[-1,6]B、[-1,4)C、[-1,+∞)D、[1,+∞)

查看答案和解析>>

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“寻找x与y的关系,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是
[-1,+∞)
[-1,+∞)

查看答案和解析>>


同步练习册答案