题目列表(包括答案和解析)
若是不全相等的实数,求证:.
证明过程如下:
,,,,
又不全相等,
以上三式至少有一个“”不成立,
将以上三式相加得,
.
此证法是( )
A.分析法 B.综合法 C.分析法与综合法并用 D.反证法
若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.
证明过程如下:
∵a、b、c∈R,∴a2+b2≥2ab,
b2+c2≥2bc,c2+a2≥2ac,
又∵a,b,c不全相等,
∴以上三式至少有一个“=”不成立,
∴将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),
∴a2+b2+c2>ab+bc+ca.
此证法是( )
(A)分析法 (B)综合法
(C)分析法与综合法并用 (D)反证法
求证:-1>-.证明:要证-1>-,只需证+>+1,即证7+2+5>11+2+1,>,因为35>11,所以原不等式成立.以上证明运用了
分析法
综合法
分析法与综合法综合使用
间接证明
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com