题目列表(包括答案和解析)
(选修4-4) 在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.
(I)写出圆的标准方程和直线的参数方程;
(Ⅱ)设直线与圆相交于两点,求的值.
在极坐标系中,圆:和直线相交于、两点,求线段的长
【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆: 即 化为直角坐标方程即
然后利用直线 即,得到圆心到直线的距离,从而利用勾股定理求解弦长AB。
解:分别将圆和直线的极坐标方程化为直角坐标方程:
圆: 即 即 ,
即, ∴ 圆心, ---------3分
直线 即, ------6分
则圆心到直线的距离,----------8分
则 即所求弦长为
在极坐标系下,已知圆和直线.
(1)求圆和直线的直角坐标方程;
(2)当时,求直线与圆公共点的极坐标.
(1) 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆以为圆心、为半径。(I)求直线的参数方程和圆的极坐标方程;(II)试判定直线和圆的位置关系.
(2)把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.
(3)关于的一元二次方程对任意无实根,求实数的取值范围.
(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分) 选修4-2:矩阵与变换
已知,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵。
(2)(本题满分7分)选修4-4:坐标系与参数方程
已知直线的参数方程:(为参数)和圆的极坐标方程:。
①将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
②判断直线和圆的位置关系。
(3)(本题满分7分)选修4-5:不等式选讲
已知函数
①解不等式;
②证明:对任意,不等式成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com