由特殊到一般.从具体到抽象.以“引导设问 为主线.学生通过对问题的思考和解答.体验学习过程.自主探索和获取知识.从而得到圆的参数方程.同时在探索的过程中也提高学生的数学抽象思维能力. 查看更多

 

题目列表(包括答案和解析)

12、在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从f(x)=lgx可抽象出f(x1•x2)=f(x1)+f(x2)的性质,那么由h(x)=
任意指数函数均可,如h(x)=2x
(填一个具体的函数)可抽象出性质h(x1+x2)=h(x1)•h(x2).

查看答案和解析>>

已知f(x)=lgx:
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f(x1•x2)=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为
h(x1+x2)=h(x1)•h(x2
h(x1+x2)=h(x1)•h(x2

由φ(x)=3x+1可抽象出性质为
φ(x1+x2)=φ(x1)+φ(x2
φ(x1+x2)=φ(x1)+φ(x2

(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从可抽象出的性质,那么由=       (填一个具体的函数)可抽象出性质

 

查看答案和解析>>

已知f(x)=lgx:
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为______,
由φ(x)=3x+1可抽象出性质为______.
(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从可抽象出的性质,那么由=       (填一个具体的函数)可抽象出性质

 

查看答案和解析>>


同步练习册答案