导函数.可导:如果函数y=f内的每点处都有导数.即对于每一个x∈(a,b).都对应着一个确定的导数f′(x0).从而构成了一个新的函数f′(x0), 称这个函数f′(x0)为函数y=f(x)在开区间内的导函数.简称导数.此时称函数y=f内可导. 查看更多

 

题目列表(包括答案和解析)

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
x2
2
在(0,2)内具有“Lg”性质,且中值ξ=
2
,f′(ξ)=-
2
2

③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
x1+x2
2

其中你认为正确的所有命题序号是
 

查看答案和解析>>

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=在(0,2)内具有“Lg”性质,且中值ξ=,f′(ξ)=-
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有[f(x1)+f(x2)]<f()恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
其中你认为正确的所有命题序号是    

查看答案和解析>>

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=数学公式在(0,2)内具有“Lg”性质,且中值ξ=数学公式,f′(ξ)=-数学公式
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有数学公式[f(x1)+f(x2)]<f(数学公式)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=数学公式
其中你认为正确的所有命题序号是 ________.

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表.

f(x)的导函数y=(x)的图象如图所示:

下列关于f(x)的命题:

①函数f(x)是周期函数;

②函数f(x)在[0,2]是减函数;

③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;

④当1<a<2时,函数y=f(x)-a有4个零点;

⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.

其中正确命题的序号是________.

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示. 下列关于f(x)的命题:
x -1 0 4 5
f(x) 1 2 2 1
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的个数是(  )

查看答案和解析>>


同步练习册答案