设AB是长为1的一条线段.等分AB得到分点A1.再等分线段A1B得到分点A2.如此无限继续下去.线段AA1.A1A2.-.An-1An.-的长度构成数列 ① 可以看到.随着分点的增多.点An越来越接近点B.由此可以猜想.当n无穷大时.AA1+A1A2+-+ An-1An 的极限是 .下面来验证猜想的正确性.并加以推广 查看更多

 

题目列表(包括答案和解析)

[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

20090602

 

B.选修4—2:矩阵与变换
二阶矩阵对应的变换将点分别变换成点.求矩阵
C.选修4—4:坐标系与参数方程
若两条曲线的极坐标方程分别为??=l与??=2cos(θ+),它们相交于A,B两点,求线
段AB的长.
D.选修4—5:不等式选讲
求函数的最大值.

查看答案和解析>>

[选做题]

A.选修4—1:几何证明选讲

    如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:

   (1)l是⊙O的切线;

   (2)PB平分∠ABD.

B.选修4—2:矩阵与变换

二阶矩阵对应的变换将点分别变换成点.求矩阵

C.选修4—4:坐标系与参数方程

若两条曲线的极坐标方程分别为=l与=2cos(θ+),它们相交于A,B两点,求线

 段AB的长.

D.选修4—5:不等式选讲

求函数的最大值.

 

查看答案和解析>>

[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

20090602

 

B.选修4—2:矩阵与变换
二阶矩阵对应的变换将点分别变换成点.求矩阵
C.选修4—4:坐标系与参数方程
若两条曲线的极坐标方程分别为??=l与??=2cos(θ+),它们相交于A,B两点,求线
段AB的长.
D.选修4—5:不等式选讲
求函数的最大值.

查看答案和解析>>

A.选修4-1:几何证明选讲

 

 
(本小题满分10分)

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.

B.选修4-2:矩阵与变换

(本小题满分10分)

已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.

C.选修4-4:坐标系与参数方程

(本小题满分10分)

求曲线C1:被直线l:y=x-所截得的线段长.

D.选修4-5:不等式选讲

(本小题满分10分)

已知a、b、c是正实数,求证:≥.

 

 

查看答案和解析>>

已知a∈R,函数f(x)=aex是定义在R上的单调递增函数,f-1(x)是它的反函数.

(1)求曲线y=f(x)和y=f-1(x)的斜率为1的切线方程;

(2)设点P,Q分别是两曲线y=f(x),y=f-1(x)上的任意一点,求|PQ|上的最小值;

(3)设点A、B分别是两曲线y=f(x),y=f-1(x)与坐标轴的交点,且|AB|是分别在两条曲线上的点连成线段长的最小值,求不等式恒成立时实数m的取值范围.

查看答案和解析>>


同步练习册答案