题目列表(包括答案和解析)
已知
(1)证明:⊥;
(2)若存在实数k和t,满足且⊥,试求出k关于t的关系式k=f(t).
(3)根据(2)的结论,试求出k=f(t)在(-2,2)上的最小值.
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;
已知直线过点P(-1,2)且与以A(-2,-3)、B(3,0)为端点的线段相交.
(1)求直线的斜率的取值范围;(2) 求直线倾斜角的取值范围. w.w.wA.-1或3 B.-1 C.7 D.-1或7
Ⅰ选择题
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非选择题
13. 14. 15. 16. (2) (3)
17. 解: (4分)
(1)增区间为: , 减区间为: (8分)
(2) (12分)
18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
从表中可得: (8分)
(2)p(=奇数)
………………12分
19.解:(1)
∴ (2分)
又 恒成立 ∴
∴ ∴
∴ (6分)
(2)
∴
∴ ①)当 时, 解集为
②当 时,解集为
③当 时,解集为 (12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如图所示空间直角坐标系Oxyz
(1)
∴
∴ ∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD与PC夹角为所求
∴ 所求二面角E-AD-B的大小为 (8分)
(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2
∴
∴ 所求部分体积 (12分)
21.解:(1)
为等比数列 (4分)
(2) (6分)
(3) (7分)
(10分)
∴M≥6 (12分)
22.解:(1)直线AB的方程为:与抛物线的切点设为T且
∴
∴抛物线c的方程为: (3分)
⑵设直线l的方程为: 易如:
设,
①M为AN中点
由 (Ⅰ)、(Ⅱ)联解,得 代入(Ⅱ)
4
∴直线l的方程为 : (7分)
②
(9分)
FM为∠NFA的平分线
且 (11分)
又
(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com