18.设.(为实数) (1)当a=3且时.求函数的值域, (2)如果函数在的值域为6.+∞.求a的值, (3)若函数在定义域上是减函数.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一实根,求H(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k取值范围;
(3)设a=1且b=0,解关于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

函数y=f(x)在区间(0,+∞)内可导,导函数f′(x)是减函数,且f′(x)>0,设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,并设函数g(x)=kx+m.

(1)用x0f(x0)、f′(x0)表示m;

(2)证明当x0∈(0,+∞)时,g(x)≥f(x);

(3)若关于x的不等式x2+1≥ax+b上恒成立,其中a、b为实数,求b的取值范围及a与b 所满足的关系.

查看答案和解析>>

函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一实根,求H(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k取值范围;
(3)设a=1且b=0,解关于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

设函数f(x)=ax2+bx+c(a,b,c为实数,且a≠0),F(x)=
f(x)
,&x>0
-f(x),?x<0.

(1)若f(-1)=0,曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴,求F(x)的表达式;
(2)在(Ⅰ)在条件下,当时,,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,证明F(m)+F(n)>0.

查看答案和解析>>

设函数f(x)=
a
3
x3+
b-1
2
x2+x+5
(a,b∈R,a>0)的定义域为R,当x=x1时,取得极大值;当x=x2时取得极小值,|x1|<2且|x1-x2|=4.
(1)求证:x1x2>0;
(2)求证:(b-1)2=16a2+4a;
(3)求实数b的取值范围.

查看答案和解析>>


同步练习册答案