4.直线和平面的位置关系 (1)直线在平面内, (2)直线和平面相交, (3)直线和平面平行--用两分法进行两次分类. 它们的图形分别可表示为如下.符号分别可表示为... 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行.那么这条直线和这个平面平行.推理模式:. 线面平行的性质定理:如果一条直线和一个平面平行.经过这条直线的平面和这个平面相交.那么这条直线和交线平行.推理模式:. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知对于任意实数k,直线(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+
3

(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.

查看答案和解析>>

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C2截得的弦长是6.

查看答案和解析>>

直线a′?平面α,直线b′?平面α,且a′∥b′,其中a′,b′分别是直线a和直线b在平面α上的正投影,则直线a与直线b的位置关系是(  )

查看答案和解析>>

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,已知圆C:
x=5cosθ-1
y=5sinθ+2
(θ为参数)和直线l:
x=4t+6
y=-3t-2
(t为参数),则圆C的普通方程为
 
,直线l与圆C的位置关系是
 

查看答案和解析>>


同步练习册答案