解:(1)证明联立的方程有两解即可 天星 教育网() 版权所有 天星 教育网() 版权所有 天星 教育网() 版权所有 天星版权 天·星om 权 天星 教育网() 版权所有 天·星om 权 天星版权 天·星om 权 查看更多

 

题目列表(包括答案和解析)

设a为实数,f(x)=a-(x∈R).

(1)证明对于任意的实数a,f(x)在R上是增函数;

(2)试确定a的值,使f(x)为奇函数;

(3)当f(x)是奇函数时,对于给定的正实数k,解不等式:f-1(x)>log2

查看答案和解析>>

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

查看答案和解析>>

已知过点的动直线与抛物线相交于两点.当直线的斜率是时,

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【解析】(1)B,C,当直线的斜率是时,

的方程为,即                                (1’)

联立  得         (3’)

由已知  ,                    (4’)

由韦达定理可得G方程为            (5’)

(2)设,BC中点坐标为               (6’)

 由       (8’)

    

BC中垂线为             (10’)

                  (11’)

 

查看答案和解析>>

定义在R+上的函数f(x)满足:
(1)存在a>1,使f(a)≠0;
(2)对任意的实数b,有f(xb)=bf(x).若方程f(mx)•f(mx2)=4f2(a)的所有解大于1,求m的取值范围.

查看答案和解析>>

已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f (x) ∣,记函数g(x)在区间[-1、1]上的最大值为M.

   (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:

  (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m    

   (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。

查看答案和解析>>


同步练习册答案