⒈ 增函数与减函数 定义:对于函数的定义域I内某个区间上的任意两个自变量的值.⑴若当<时.都有<,则说在这个区间上是增函数,⑵若当<时.都有>,则说在这个区间上是减函数. 说明:函数是增函数还是减函数.是对定义域内某个区间而言的.有的函数在一些区间上是增函数.而在另一些区间上不是增函数.例如函数(图1).当∈[0,+)时是增函数.当∈(-,0)时是减函数. ⒉ 单调性与单调区间 若函数y=f(x)在某个区间是增函数或减函数.则就说函数在这一区间具有单调性.这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数. 在单调区间上.增函数的图象是上升的.减函数的图象是下降的. 说明:⑴函数的单调区间是其定义域的子集, ⑵应是该区间内任意的两个实数.忽略需要任意取值这个条件.就不能保证函数是增函数.例如.图5中.在那样的特定位置上.虽然使得>.但显然此图象表示的函数不是一个单调函数, ⑶除了严格单调函数外.还有不严格单调函数.它的定义类似上述的定义.只要将上述定义中的“<或>, 改为“ 或, 即可, ⑷定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况, 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增.自变量的变化与函数值的变化相对时是单调递减. ②几何特征:在自变量取值区间上.若单调函数的图象上升.则为增函数.图象下降则为减函数. 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

  (I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:

  (II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:

  (III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

 

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

下面四个命题:
①奇函数的图象一定过原点;
②函数y=
1-x2
|x+2|-2
是奇函数;
③奇函数f(x)在[a,b]上为增函数,则函数f(x)在[-b,-a]上为减函数;
④定义在R上的函数y=f(x),则函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称;
其中正确命题的序号是
②④
②④
(把所有正确命题的序号都填上).

查看答案和解析>>

(20)设f(x)是定义在[0, 1]上的函数,若存在x*∈(0,1),使得f(x)在[0, x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.

    对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

(I)证明:对任意的x1x2∈(0,1),x1x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;

(II)对给定的r(0<r<0.5),证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由(I)所确定的含峰区间的长度不大于 0.5+r;

(III)选取x1x2∈(0, 1),x1x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法:

(1)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;

(2)对给定的r(0<r<0.5),证明存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(1)所确定的含峰区间的长度不大于0.5+r;

(3)选取x1,x2∈(0,1),x1<x2,由(1)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>


同步练习册答案