设三次函数.在处取得极值.其图像在处的切线的斜率为. (1)求证:, (2)若函数在区间上单调递增.求的取值范围, 查看更多

 

题目列表(包括答案和解析)

设三次函数,在处取得极值,其图像在处的切线的斜率为

(1)求证:

(2)若函数在区间上单调递增,求的取值范围;

(3)问是否存在实数是与无关的常数),当时,恒有恒成立?若存在,试求出的最小值;若不存在,请说明理由。

查看答案和解析>>

设三次函数,在处取得极值,其图像在处的切线的斜率为。(1)求证:;(2)若函数在区间上单调递增,求的取值范围;

查看答案和解析>>

(本小题满分13分)设三次函数,在处取得极值,其图像在处的切线的斜率为

(1)求证:

(2)若函数在区间上单调递增,求的取值范围。

查看答案和解析>>

设三次函数处取得极值,其图象在处的切线的斜率为。求证:

查看答案和解析>>

设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图象在x=m处的切线的斜率为-3a.

(Ⅰ)求证:

(Ⅱ)若函数y=f(x)在区间[s,t]上单调递增,求|s-t|的取值范围;

(Ⅲ)问是否存在实数k(k是与a,b,c,d无关的常数),当x≥k时,恒有恒成立?若存在,试求出k的最小值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案