( 本大题14分,第一小题7分,第二小题7分) 已知二次函数.若对任意x.x∈R.恒有2f(≤f(x)+f(x)成立.不等式f(x)<0的解集为A. (1)求集合A, (2)设集合.若集合B是集合A的子集.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,

求⑴ ∠ADB的大小;⑵ BD的长.

【解析】本试题主要考查了三角形的余弦定理和正弦定理的运用

第一问中,∵cos∠ADC=

=-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°

第二问中,结合正弦定理∵∠DAB=180°-∠ADB-∠B=75° 

    得BD==5(+1)

解:⑴ ∵cos∠ADC=

=-,……………………………3分

∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=,       ……………5分

∴ cos∠ADB=60°                                    ……………………………6分

⑵ ∵∠DAB=180°-∠ADB-∠B=75°                   ……………………………7分

                                 ……………………………9分

得BD==5(+1)

 

查看答案和解析>>

某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数,(本小题满分14分)

(1)根据以上数据,求出的解析式。

(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,

∴A+b=13,   -A+b=7   解得  A=3,  b=10

第二问要想船舶安全,必须深度,即

       

解得: 得到结论。

 

查看答案和解析>>


同步练习册答案